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Classes of function w~, r = (r I' "" rn)' 1 < p < cL, with "dominated" mixed
derivative are considered. A new formula for the K-functional of the couple
(Lp : W;) is proved. The functional spaces generated by the real method of
interpolation are described. ie 1995 Academic Press. tnc.

Let f be a function of n real variables that are 2n-periodic 10 each
variable and such that

r f(x l , ... , x n ) dXj = 0,
-n

j= I, ... , n.

Denote by flr1 a mixed derivative of order r=(r\, ..., rJ in the WeiI sense.
Ifpn E L/lfnl, 1< P < (f), we say thatfbelongs to the class W;, For con
venience sake, consider the coordinates r\, ... , r n as being in nondecreasing
order of magnitude.

Let Ilfll w' = Ilfll p . r ~f Ilpr)ll p ' Beginning with Babensko's paper [I]
many papers have devoted to the investigation of these classes (see, for
example, [2]).

In this paper we give a formula for the K-functional of the couple
(Lp ; W;) in the Ciesielski form and describe the interpolating space
generated by the real method of interpolation.

* This research was supported by the Israeli Ministry of Science and the Arts through the
Ma'gara program for absorption of immigrant mathematicians at the Technion-Israel
Institute of Technology.
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1. Let us remember the definition of the K-functional (see, for
example, [3]). Peetre's K-functional is given by the formula

where the infimum is taken over all representations f = g +h.
Let

p(sl= {kEEn: 2srl ~ Ikjl <2'1,}= 1, .. " n}

be sets of indices for every S E E/~ ,
We denote the segments of the Fourier series off by

JsU; x) = L J(k) e'lk. XI.

kEpis)

THEOREM 1. Let 1< P < (fJ and 2N = [ l/t]' Then

II

I arl + + rn II
K(trl;f;Lp ; W;)......, 2Nrl I a rl a rnJsU;x)+ I JsU;x)I'·

(s~r}~y!N Xl X n (s,r}>rlN P

Proof It is based on the Marcinkievicz mUltiplier theorem and Bohr's
and Bernstein's inequalities [2]. From the definition and the Marcinkievicz
theorem we have

K(trl;f;Lp ; w;)~11 I JsU;X)11
IllS, r»r,N I p

+ I bsU; x) II' .
Is.r»r,N p

In order to prove the lower estimate it suffices to show the following two
inequalities: The first is

II

I aq + .. , + rn II
2Nq L oxq ... axrn Js(g; x) + 1: J.(g; x) II ~ Cp Ilgll p

(s,r)~rlN '" I n (s,rl~rtN p

and it follows from Bernstein's inequality and the Marcinkievicz theorem.
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Bohr's inequality and the Marcinkievicz theorem yield the second
inequality:

I' I 8rl + '" +r. II C(p, r)
112Nrl I 8xrl ... 8xr.15.(h;x)+ I 15.(h;x) ~~llhllp.r'

(s.r)~rjN 1 n (s.r»r 1 N P

The theorem is proved.

2. Let us consider the following linear polynomial method of sum
mability

the so-called "step-hyperbolic" Riesz means [2]. Thus the theorem can be
rewritten in the form

and the class of interpolating spaces generated by the real method is
defined by the seminorm [3]

o<e~l; l~q<oo

q= 00.

Using the Marcinkievicz multiplier theorem we can describe these spaces
by means of best approximation by trigonometric polynomials with
harmonics from the hyperbolic cross.

Let Ek(f; L p ) be the error in the best approximation to f by
trigonometric polynomials with harmonics from the set

U Ps(f)·
(s. r)~f"[N

STATEMENT. For 0 < e< I and I ~ q < 00,
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Proof The lower estimate is obvious. When proving the upper estimate
we use the Marcinkievicz multiplier theorem. It yields

I, (2 kOr , lif- Rk(flllp),j
k~O

~ k~O 2
klirl

'! (to (2 iJ
-

kl
r, E)f; Lpl +J~~+ I EJ(f; Lp)r

The conclusion now is a consequence of Hardy's well-known inequality.
The statement is proved.

Remark. In [4] an estimate of the best approximation by "hyperbolic
cross" via the mixed modulus of continuity is given.
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