Functional Classes with "Dominated" Mixed Derivative and the K-Functional*

E. Belinskil

Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel

Communicated by Zeev Ditzian

Received January 26, 1994; accepted in revised form November 26, 1994

Abstract

Classes of function $W_{p}^{r}, r=\left(r_{1}, \ldots, r_{n}\right), 1<p<\infty$, with "dominated" mixed derivative are considered. A new formula for the K-functional of the couple ($L_{p} ; W_{p}^{\prime}$) is proved. The functional spaces generated by the real method of interpolation are described. ic. 1995 Academic Press. Inc.

Let f be a function of n real variables that are 2π-periodic in each variable and such that

$$
\int_{-\pi}^{\pi} f\left(x_{1}, \ldots, x_{n}\right) d x_{j}=0, \quad j=1, \ldots, n
$$

Denote by $f^{(\mathbf{r})}$ a mixed derivative of order $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right)$ in the Weil sense. If $f^{(I)} \in L_{p}\left(\mathbb{T}^{n}\right), 1<p<\infty$, we say that f belongs to the class W_{p}^{r}. For convenience sake, consider the coordinates r_{1}, \ldots, r_{n} as being in nondecreasing order of magnitude.

Let $\|f\|_{w_{r}^{r}}=\|f\|_{p, \text { r }} \stackrel{\text { def }}{=}\left\|f^{(\mathbf{r})}\right\|_{p}$. Beginning with Babensko's paper [1] many papers have devoted to the investigation of these classes (see, for example, [2]).

In this paper we give a formula for the K-functional of the couple ($L_{p} ; W_{p}^{r}$) in the Ciesielski form and describe the interpolating space generated by the real method of interpolation.

[^0]1. Let us remember the definition of the K-functional (see, for example, [3]). Peetre's K-functional is given by the formula

$$
K\left(t, f ; L_{p} ; W_{p}^{\mathbf{r}}\right)=\inf _{f=g+h}\left(\|g\|_{p}+t\|h\|_{p, \mathbf{r}}\right),
$$

where the infimum is taken over all representations $f=g+h$.
Let

$$
\rho(s)=\left\{\mathbf{k} \in \mathbb{Z}^{n}: 2^{s_{j}-1} \leqslant\left|k_{j}\right|<2^{s_{3}}, j=1, \ldots, n\right\}
$$

be sets of indices for every $s \in \mathbb{Z}^{n}+$
We denote the segments of the Fourier series of f by

$$
\delta_{\mathbf{s}}(f ; \mathbf{x})=\sum_{\mathbf{k} \in \rho \mid s)} \hat{f}(k) e^{i(k, x)}
$$

Theorem 1. Let $1<p<\infty$ and $2^{N}=[1 / t]$. Then
$K\left(t^{r_{i}} ; f ; L_{p} ; W_{p}^{\mathbf{r}}\right) \sim\left\|\frac{1}{2^{N_{r_{1}}}} \sum_{(\mathbf{s}, \mathbf{r}) \leqslant r_{1} N} \frac{\partial^{r_{1}+\cdots+r_{n}}}{\partial x_{1}^{r_{1} \cdots \partial} x_{n}^{r_{n}}} \delta_{\mathbf{s}}(f ; \mathbf{x})+\sum_{(\mathbf{s}, \mathbf{r})>r_{1} N} \delta_{\mathbf{s}}(f ; \mathbf{x})\right\|_{p}$.
Proof. It is based on the Marcinkievicz multiplier theorem and Bohr's and Bernstein's inequalities [2]. From the definition and the Marcinkievicz theorem we have

$$
\begin{aligned}
K\left(t^{r_{1}} ; f ; L_{p} ; W_{p}^{\mathbf{r}}\right) \leqslant & \sum_{(\mathbf{s}, \mathbf{r})>r_{1} N} \delta_{\mathbf{s}}(f ; \mathbf{x}) \|_{p} \\
& +\frac{1}{2^{N r_{1}}}\left\|\sum_{(\mathbf{s}, \mathbf{r}) \leqslant r_{1} N} \frac{\partial^{r_{1}+\cdots+r_{n}}}{\partial_{x_{1}}^{r_{1}} \cdots \partial x_{n}^{r_{n}}} \delta_{\mathbf{s}}(f ; \mathbf{x})\right\|_{p} \\
\leqslant & C_{p} \| \frac{1}{2^{N r_{1}}} \sum_{(\mathbf{s}, \mathbf{r}) \leqslant r_{1} N} \frac{\partial^{r_{1}+\cdots+r_{n}}}{\partial x_{1}^{r_{1} \cdots \partial x_{n}^{r_{n}}}} \delta_{\mathbf{s}}(f ; \mathbf{x}) \\
& +\sum_{(\mathbf{s}, \mathbf{r})>r_{1} N} \delta_{\mathbf{s}}(f ; \mathbf{x}) \|_{p}
\end{aligned}
$$

In order to prove the lower estimate it suffices to show the following two inequalities: The first is

$$
\left\|\frac{1}{2^{N r_{1}}} \sum_{(\mathbf{s}, \mathrm{r}) \leqslant r_{1} N} \frac{\partial^{r_{1}+\cdots+r_{n}}}{\partial x_{1}^{r_{1}} \cdots \partial x_{n}^{r_{n}}} \delta_{\mathbf{s}}(g ; \mathbf{x})+\sum_{(\mathbf{s}, \mathrm{r}) \leqslant r_{1} N} \delta_{\mathbf{s}}(g ; \mathbf{x})\right\|_{p} \leqslant C_{p}\|g\|_{p}
$$

and it follows from Bernstein's inequality and the Marcinkievicz theorem.

Bohr's inequality and the Marcinkievicz theorem yield the second inequality:

$$
\left\|\frac{1}{2^{N r_{1}}} \sum_{(\mathbf{s}, \mathbf{r}) \leqslant r_{1} N} \frac{\partial^{r_{1}+\cdots+r_{n}}}{\partial x_{1}^{r_{1}} \cdots \partial x_{n}^{r_{n}}} \delta_{\mathbf{s}}(h ; \mathbf{x})+\sum_{(\mathbf{s}, \mathbf{r})>r_{1} N} \delta_{\mathbf{s}}(h ; \mathbf{x})\right\|_{p} \leqslant \frac{C(p, \mathbf{r})}{2^{N r_{1}}}\|h\|_{p, \mathbf{r}}
$$

The theorem is proved.
2. Let us consider the following linear polynomial method of summability

$$
R_{N}(f ; \mathbf{x})=\sum_{(\mathbf{s}, \mathbf{r}) \leqslant r_{1} N}\left[\delta_{\mathbf{s}}(f ; \mathbf{x})-\frac{1}{2^{r_{1}}} \frac{\partial^{r_{1}+\cdots+r_{n}}}{\partial x_{\mathbf{1}}^{r_{1}} \cdots \partial x_{n}^{r_{n}}} \delta_{\mathbf{s}}(f ; \mathbf{x})\right]
$$

the so-called "step-hyperbolic" Riesz means [2]. Thus the theorem can be rewritten in the form

$$
K\left(t^{r_{1}} ; f ; L_{p} ; W_{p}^{\mathbf{r}}\right) \simeq\left\|f-R_{N}(f)\right\|_{p}
$$

and the class of interpolating spaces generated by the real method is defined by the seminorm [3]

$$
\|f\|_{\theta, q}= \begin{cases}\sum_{k=0}^{\infty}\left(\left(2^{k \theta r_{1}}\left\|f-R_{k}(f)\right\|_{p}\right)^{q}\right)^{1 / q}, & 0<\theta \leqslant 1 ; 1 \leqslant q<\infty \\ \sup _{k} 2^{k \theta r_{1}}\left\|f-R_{k}(f)\right\|_{p}, & q=\infty\end{cases}
$$

Using the Marcinkievicz multiplier theorem we can describe these spaces by means of best approximation by trigonometric polynomials with harmonics from the hyperbolic cross.

Let $E_{k}\left(f ; L_{p}\right)$ be the error in the best approximation to f by trigonometric polynomials with harmonics from the set

$$
\bigcup_{(s, r) \leqslant r_{1} N} \rho_{\mathrm{s}}(f)
$$

Statement. For $0<\theta<1$ and $1 \leqslant q<\infty$,

$$
\|f\|_{\theta, q} \simeq\left(\sum_{k=0}^{\infty}\left(2^{k \theta r_{1}} E_{k}\left(f ; L_{p}\right)\right)^{q}\right)^{1 / q}
$$

Proof. The lower estimate is obvious. When proving the upper estimate we use the Marcinkievicz multiplier theorem. It yields

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left(2^{k \ell r_{1}}\left\|f-R_{k}(f)\right\|_{p}\right)^{q} \\
& \leqslant \sum_{k=0}^{\infty} 2^{k\left(\theta r_{1} q\right.}\left(\sum_{j=0}^{\infty}\left(2^{(j-k) r} E_{j}\left(f ; L_{p}\right)+\sum_{j=k+1}^{\infty} E_{j}\left(f ; L_{p}\right)\right)^{q}\right.
\end{aligned}
$$

The conclusion now is a consequence of Hardy's well-known inequality. The statement is proved.

Remark. In [4] an estimate of the best approximation by "hyperbolic cross" via the mixed modulus of continuity is given.

References

1. K. I. Babenko, On the approximation of periodic functions of several variables by trigonometric polynomials, Dokl. Akad. Nauk USSR 132, No. 2 (1960), 247-250; Engl. transl., Soviet Math. Dokl 1 (1960).
2. V. N. Temlyakov, "Approximation of Functions with a Bounded Mixed Derivative," Nauka Moscow, 1986; Engl. transl., Proc. Steklov Inst. Math. 178, No. 1 (1989).
3. Y. Bergh and Y. LÖfström, "Interpolation Spaces," Springer-Verlag, New York/Berlin. 1976.
4. N. N. Pustovortov, On the multidimensional Jackson theorem in the space $L_{p}, M a t$. Zametki 52, No. 1 (1992), 105-113; Engl. transl., Math. Notes 52, No. 1 (1992).

[^0]: * This research was supported by the Israeli Ministry of Science and the Arts through the Ma'gara program for absorption of immigrant mathematicians at the Technion-Israel Institute of Technology.

